Pipelines - Retrievers - Usage

Creating a new retriever configuration

There are two types of retrievers: table and volume. Given the different nature of the data sources, and the options required for each we have different functions to create them.

Retriever for a table data source

The aidb.create_retriever_for_table function is used to create a retriever for a table data source. This is the function signature, you can see many of those are optional and have defaults.

create_retriever_for_table(
-------------------------------------------------------------------------------
    name                                TEXT,
    model_name,                         TEXT,
    source_table_name                   regclass,
    source_data_column            TEXT,
    source_data_type                    aidb.RetrieverSourceDataFormat,
    source_key_column                   TEXT DEFAULT 'id',
    vector_table                        TEXT DEFAULT NULL,
    vector_data_column                  TEXT DEFAULT 'embeddings',
    vector_key_column                   TEXT DEFAULT 'id',
    topk                                INTEGER DEFAULT 1,
    distance_operator                   aidb.distanceoperator DEFAULT 'L2',
    options                             JSONB DEFAULT '{}'::JSONB
)

Example: Creating a retriever

SELECT aidb.create_retriever_for_table(
               name => 'test_retriever',
               model_name => 'simple_model',
               source_table_name => 'test_source_table',
               source_data_column => 'content',
               source_data_type => 'Text'
       );

In this example, we use all the defaults.

If you are only using Postgres tables, skip to the next section.

If you are using external data sources, you need to create a volume and create a retriever for it, which is explained in the next section.

Retriever for a volume data source

Creating a new volume

Before we can create a retriever for a volume, we need to create a volume. The aidb.create_volume function is used to create a volume. This is the function signature, you can see many of those are optional and have defaults.

aidb.create_volume(
-------------------------------------------------------------------------------
    name                              TEXT,
    server_name                       TEXT,
    path                              TEXT,
    mime_type                         TEXT
)

Note that mime_type actually takes only Text or Image as values.

Example: Creating a volume

SELECT aidb.create_volume(
               name => 'test_volume',
               server_name => 'test_server',
               path => 'test_path',
               mime_type => 'Text'
       );

The server_name comes from calling PGFS functions to create a storage location; pgfs.create_storage_location. The path is the path to the data in the storage location.

Creating a retriever for a volume

The aidb.create_retriever_for_volume function is used to create a retriever for a volume data source. This is the function signature, you can see many of those are optional and have defaults.

aidb.create_retriever_for_volume(
-------------------------------------------------------------------------------
    name                              TEXT,
    model_name,                       TEXT,
    source_volume_name                TEXT,
    vector_table                      TEXT DEFAULT NULL,
    vector_data_column                TEXT DEFAULT 'embeddings',
    vector_key_column                 TEXT DEFAULT 'id',
    topk                              INTEGER DEFAULT 1,
    distance_operator                 aidb.distanceoperator DEFAULT 'L2',
    options                           JSONB DEFAULT '{}'::JSONB
)

Example: Creating a retriever for a volume

SELECT aidb.create_retriever_for_volume(
               name => 'test_retriever_volume',
               model_name => 'simple_model',
               source_volume_name => 'test_volume'
       );

In this example, we use all the defaults.

Creating the Embeddings

You can use bulk embedding if there is existing data in the source table:

SELECT aidb.bulk_embedding('test_retriever'); 

Enable auto-embedding for any future changes:

SELECT aidb.enable_auto_embedding_for_table('test_retriever');

You can disable auto-embedding as well:

SELECT aidb.disable_auto_embedding_for_table('test_retriever');

Retrieving

A basic key retriever, aidb.retrieve_key is available that does not look up the source data, but just returns the ID/key of the matching embeddings:

Retrieving the key

aidb.retrieve_key(<retriever name>, <query string>, <optional number of results>);

Example: Retrieving the key

SELECT * FROM aidb.retrieve_key('test_retriever', 'shoes', 2);
Output
key  |      distance
-------+--------------------
 43941 | 0.2938963414490189
 19337 | 0.3023805122617119
(2 rows)

This can be used if you want to do a join/lookup yourself based on the key. For retrievers with external (volume) data sources, this is especially useful. Usually the application itself wants to do the retrieval from the external data source. Or you might want to push-down the actual retrieval to a client application.

The retrieve_text function joins the embeddings with the source data and directly returns the results:

Retrieving the text

The retrieve_text function joins the embeddings with the source data and directly returns the results:

aidb.retrieve_text(<retriever name>, <query string>, <optional number of results>);

Example

SELECT * FROM aidb.retrieve_text('test_retriever', 'jacket', 2);
Output
key  |                       value                        |      distance
-------+----------------------------------------------------+--------------------
 19337 | United Colors of Benetton Men Stripes Black Jacket | 0.2994317672742334
 55018 | Lakme 3 in 1 Orchid  Aqua Shine Lip Color          | 0.3804609668507203
(2 rows)

Listing the retrievers

A view is available that lists all the retrievers. aidb.retrievers also includes some of the retrievers configuration:

SELECT * FROM aidb.retrievers;
Output
 id |        name         |     vector_table_name      | vector_table_key_column | vector_table_vector_column |  model_name  | topk | distance_operator | options | source_table_name | source_table_data_column | source_table_data_column_type | source_table_key_column | source_volume_name
----+---------------------+----------------------------+-------------------------+----------------------------+--------------+------+-------------------+---------+-------------------+--------------------------+-------------------------------+-------------------------+--------------------
  2 | test_retriever      | test_retriever_vector      | id                      | embeddings                 | simple_model |    5 | InnerProduct      | {}      | test_source_table | content                  | Text                          | id                      |
  5 | test_retriever_cosa | test_retriever_cosa_vector | id                      | embeddings                 | simple_model |    1 | L2                | {}      | test_source_table | content                  | Text                          | id                      |
  3 | test_retriever_cos  | test_retriever_cos_vector  | id                      | embeddings                 | simple_model |    5 | Cosine            | {}      | test_source_table | content                  | Text                          | id                      |
(3 rows)

It is recommended that you just select the columns you are interested in:

SELECT name, source_table_name FROM aidb.retrievers;
Output
        name         | source_table_name
---------------------+-------------------
 test_retriever      | test_source_table
 test_retriever_cos  | test_source_table
 test_retriever_cosa | test_source_table
(3 rows)

Deleting a retriever

This will not delete the vector table or anything else, just the configuration:

SELECT aidb.delete_retriever(<name>);

End to end example

You can find an end-to-end example for a table/text retriever at on the Retrievers example page.


Could this page be better? Report a problem or suggest an addition!