
PostgreSQL for
Developers

Lætitia Avrot

2023/04/12

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.2

Agenda

● Small things most developers don't know about

● Document-Centric Applications

● Geographic Information Systems (GIS)

● Business Intelligence

● Central Data Center

● Server-Side Languages

● Overview of tools outside Postgres

2

This talk will cover the advanced features of
Postgres that make it the most-loved RDBMS
by developers and a great choice for non-
relational workloads.

Portions of this presentation were taken from https://momjian.us/presentations

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.4

● Postgres is loved by developers but most of them don't even know the full
power of Postgres.

Small things most developers don't know about

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.5

Transactions DDL
BEGIN WORK;

ALTER TABLE customer ADD COLUMN debt_limit NUMERIC(10,2);

ALTER TABLE customer ADD COLUMN creation_date TIMESTAMP WITH TIME ZONE;

ALTER TABLE customer RENAME TO cust;

COMMIT;

Everything is visible to other transactions
only once the COMMIT is issued.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.6

Transactions DDL
BEGIN WORK;

EXPLAIN (ANALYZE, BUFFER) [my query];

DROP INDEX …;

EXPLAIN (ANALYZE, BUFFER) [my query];

ROLLBACK;

Analyzing how removing an index can
impact the plan and duration of the query.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.7

Arrays
CREATE TABLE employee (name TEXT PRIMARY KEY, certifications TEXT[]);

INSERT INTO employee VALUES ('Bill', '{"CCNA", "ACSP", "CISSP"}');

SELECT name
FROM employee
WHERE certifications @> '{ACSP}';

name

Bill

Specific operator to check if an element is
in an array.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.8

Range Types
CREATE TABLE car_rental (id SERIAL PRIMARY KEY, time_span TSTZRANGE);

INSERT INTO car_rental
VALUES (DEFAULT, '[2016-05-03 09:00:00, 2016-05-11 12:00:00)');

SELECT * FROM car_rental
WHERE time_span @> '2016-05-09 00:00:00'::timestamptz;

id | time_span
----+---
1 | ["2016-05-03 09:00:00-04","2016-05-11 12:00:00-04")

Only one column to
store and query.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.9

Full Text Search

SELECT line
FROM fortune
WHERE to_tsvector('english', line) @@ to_tsquery('cat & (sleep | nap)');

line

People who take cat naps don’t usually sleep in a cat’s cradle.
Q: What is the sound of one cat napping

Specific operator for full
text operations

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.10

Trigram Searches

SELECT line
FROM fortune
WHERE line ILIKE ’%verit%’
ORDER BY 1;

line

body. There hangs from his belt a veritable arsenal of deadly weapons:
In wine there is truth (In vino veritas).
Passes wind, water, or out depending upon the severity of the

Case insensitive LIKE

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.11

Regular expressions

SELECT line
FROM fortune
WHERE line ~ 'verit'
ORDER BY 1;

line

body. There hangs from his belt a veritable arsenal of deadly weapons:
In wine there is truth (In vino veritas).
Passes wind, water, or out depending upon the severity of the

Specific operator for
regular expressions

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.12

Regular expressions

regexp_count regexp_replace

regexp_instr regexp_replace

regexp_like regexp_split_to_array

regexp_match regexp_split_to_table

regexp_matches regexp_substr

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.13

Views and materialized views

● Views = stored SQL query
● Materialized views = stored result of an SQL query

→ Materialized views results might be inconsistent.
→ They have to be refreshed.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.14

View example

CREATE TABLE employee (name TEXT PRIMARY KEY, certifications TEXT[]);
INSERT INTO employee VALUES ('Bill', '{"CCNA", "ACSP", "CISSP"}');

CREATE VIEW acsp AS (SELECT * FROM employee WHERE certifications @> '{ACSP}');

EXPLAIN (SELECT * FROM acsp);

QUERY PLAN

Seq Scan on employee (cost=0.00..1.01 rows=1 width=54)
Filter: (certifications @> '{ACSP}'::text[])

(2 rows)

Scans the employee table
with a filter

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.15

Materialized view example

CREATE TABLE employee (name TEXT PRIMARY KEY, certifications TEXT[]);
INSERT INTO employee VALUES ('Bill', '{"CCNA", "ACSP", "CISSP"}');

CREATE MATERIALIZED VIEW acsp_m AS
(SELECT * FROM employee WHERE certifications @> '{ACSP}');

EXPLAIN (SELECT * FROM acsp_m);

QUERY PLAN

Seq Scan on ascp_m (cost=0.00..1.01 rows=1 width=54)

(2 rows)

Scans the acsp_m
materialized view. No filter.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.16

Indexes

● Views can't be indexed
CREATE INDEX ON acsp(name);
ERROR: cannot create index on relation "acsp"
DETAIL: This operation is not supported for views.

● Materialized views can be indexed
CREATE INDEX ON ascp_m(name);
CREATE INDEX

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.17

Refreshing materialized views

● With heavy locks
REFRESH MATERIALIZED VIEW ascp_m ;
REFRESH MATERIALIZED VIEW

● With light locks
REFRESH MATERIALIZED VIEW CONCURRENTLY ascp_m ;
ERROR: cannot refresh materialized view "public.ascp_m" concurrently
HINT: Create a unique index with no WHERE clause on one or more columns of
the materialized view.

Needs a unique index

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.18

Refreshing materialized views

● With heavy locks
REFRESH MATERIALIZED VIEW ascp_m ;
REFRESH MATERIALIZED VIEW

● With light locks
REFRESH MATERIALIZED VIEW CONCURRENTLY ascp_m ;
ERROR: cannot refresh materialized view "public.ascp_m" concurrently
HINT: Create a unique index with no WHERE clause on one or more columns of
the materialized view.

Needs a unique index

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.19

● Postgres was designed from the start to be extensible. This makes it a great choice
for non-relational (No SQL) applications.

Document-Centric Applications

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.20

• Fully and naturally integrated with ANSI SQL in Postgres
• JSON and SQL queries use the same language, the same planner, and the same ACID compliant

transaction framework
• JSON and HSTORE are elegant and easy to use extensions of the underlying object-relational

model

JSON and ANSI SQL - A natural fit

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.21

JSON and JSONB

• JSON and JSONB data types are meant to store JSON documents
• JSON will store it as text. It will preserve:

• White space between tokens
• The order of keys
• All keys included duplicates

• JSONB will store a binary representation of the document. It won't preserve
• White space between tokens
• The order of keys
• Duplicate values of a key

• JSON values will be inserted faster
• JSONB values will be queried faster

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.22

JSON Examples

CREATE TABLE semi_structured_data (object JSONB);

….

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200, "available": true,
"warranty_years": 1}

…

INSERT INTO semi_structured_data (object) VALUES

(' { "name": "Apple Phone",

"type": "phone",

"brand": "ACME",

"price": 200,

"available": true,

"warranty_years": 1

} ')

Create a table JSONB Field

Simple JSON Data
Element

Insert this data element into the table
semi_structured_objects

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.23

{
"firstName": "John", // String Type
"lastName": "Smith",
"isAlive": true, // Boolean
"age": 25, // Number Type
"height_cm": 167.6,
"address": { // Object Type

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [// Object Array
{
"type": "home", "number": "212 555-1234"

},
{
"type": "office", "number": "646 555-4567"

}
],
"children": [],
"spouse": null

}

}

JSON Data Type Example

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.24

products=# insert into semi_structured_objects values('{ "firstName": "John", "lastName": "Smith", "isAlive": true, "age":
25, "height_cm": 167.6,

"address": {
"streetAddress": "21 2nd Street", "city": "New York", "state": "NY", "postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home", "number": "212 555-1234"

},
{
"type": "office", "number": "646 555-4567"

}
],
"children": [],
"spouse": null

}
');

products=# select * from semi_structured_objects ;

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200, "available": true, "warranty_years": 1}

{"age": 25, "spouse": null, "address": {"city": "New York", "state": "NY", "postalCode": "10021-3100", "streetAddress": ...

Can store different objects in same field

Different ROWs with different
attributes.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.25

products=# select * from semi_structured_objects ;

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200, "available": true, "warranty_years": 1}

{"age": 25, "spouse": null, "address": {"city": "New York", "state": "NY", "postalCode": "10021-3100", "streetAddress": ...

products=# select object->>'name' as "Product Name" from semi_structured_objects where object->>'brand'='ACME';

Product Name

Apple Phone

(1 row)

products=#

SQL constructs to query the JSON DATA

Using the operator ->> to select a key

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.26

products=# select * from semi_structured_objects ;

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200, "available": true, "warranty_years": 1}

{"age": 25, "spouse": null, "address": {"city": "New York", "state": "NY", "postalCode": "10021-3100", "streetAddress": ...

products=# update semi_structured_objects set object['price'] = to_jsonb(150);

products=# select * from semi_structured_objects ;

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 150, "available": true, "warranty_years": 1}

{"age": 25, "spouse": null, "address": {"city": "New York", "state": "NY", "postalCode": "10021-3100", "streetAddress": ...

Modifying JSON DATA

Using the operator to_jsonb function to
format the value as jsonb

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.27

products=# select * from product;

weight | sku | name | manufacturer | instock | price

--------+-----+---------------+--------------+---------+---------

0.5 | 1 | Apple iPhone | Apple | t | $950.00

0.3 | 2 | Apple Watch | Apple | t | $220.00

0.2 | 3 | Apple earpods | Apple | t | $220.00

3 | 4 | Macbook Pro | Apple | t | $220.00

products=# select to_json(r) from (select sku as id, name as prod_name from product) r;

{"id":1,"prod_name":"Apple iPhone"}

{"id":2,"prod_name":"Apple Watch"}

{"id":3,"prod_name":"Apple earpods"}

{"id":4,"prod_name":"Macbook Pro"}

(4 rows)

Transform tables to JSON Format

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.28

JSON and ANSI SQL Example

SELECT DISTINCT
product_type,

data->>'brand' as Brand,
data->>'available' as Availability

FROM json_data

JOIN product
ON (product.product_type=semi_structured_objects.object->>'name')
WHERE semi_structured_objects.object->>'available'=true;

product_type | brand | availability
---------------------------+-----------+--------------
AC3 Phone | ACME | true

ANSI SQL

JSON

No need for programmatic logic to combine SQL and NoSQL in the
application – Postgres does it all

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.29

JSON path

• Support for the SQL/JSON path language in PostgreSQL

• Uses some JavaScript conventions:
• Dot (.) is used for member access.
• Square brackets ([]) are used for array access.
• SQL/JSON arrays are 0-relative, unlike regular SQL arrays that start from 1.

• Variables:
• $: A variable representing the JSON value being queried
• $varname : A named variable.
• @: A variable representing the result of path evaluation in filter expressions

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.30

JSON path - Example

{
"track": {

"segments": [

{
"location": [47.763, 13.4034

],
"start time": "2018-10-14

10:05:14",

"HR": 73
},

{
"location": [47.706, 13.2635

],

"start time": "2018-10-14
10:39:21",

"HR": 135
}
]

}
}

$.track.segments:
retrieves the available track segments

$.track.segments[*].location:
retrieves the contents of an array

$.track.segments[1].location:

returns the coordinates of the first segment only

? (condition):

filters

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.31

JSON path - Example

{
"track": {

"segments": [

{
"location": [47.763, 13.4034

],
"start time": "2018-10-14

10:05:14",

"HR": 73
},

{
"location": [47.706, 13.2635

],

"start time": "2018-10-14
10:39:21",

"HR": 135
}
]

}
}

$.track.segments[*].HR ? (@ > 130)

retrieves all heart rate values higher than 130

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.32

JSON path - Example

{
"track": {

"segments": [

{
"location": [47.763, 13.4034

],
"start time": "2018-10-14

10:05:14",

"HR": 73
},

{
"location": [47.706, 13.2635

],

"start time": "2018-10-14
10:39:21",

"HR": 135
}
]

}
}

$.track.segments[*] ?
(@.location[1] < 13.4).HR ? (@ > 130)

First filters all segments by location, and then
returns high heart rate values for these
segments, if available

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.33

Indexing JSON data
• JSON data are indexed with GIN indexes. They support those operators:

• ?, ?| and ?&
• @>
• @? and @@

CREATE INDEX idxgin ON api USING GIN (jdoc);

Example
'{"a":1, "b":2}'::jsonb ? 'b' → t
'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] → t
'["a", "b", "c"]'::jsonb ?& array['a', 'b'] → t

Example
'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb → t
Example
'{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)' → t
'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2' → t

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

CREATE INDEX idxgin ON api USING GIN (jdoc);

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.34

More information

● Some consider Postgres JSON support state of the art

● Extensive support for jsonpath

● Webinar by Bruce Momjian, Marc Linster and Thom Brown
○ https://www.youtube.com/watch?v=XsDOMzT1rIo

● Webinar by Andrew Dunstan here:
○ https://www.2ndquadrant.com/en/blog/video-introduction-json-data-types-postgresql/

https://www.youtube.com/watch?v=XsDOMzT1rIo
https://www.2ndquadrant.com/en/blog/video-introduction-json-data-types-postgresql/

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.35

● PostGIS is one of the most popular geospatial database offerings in the market.
Turning Postgres into one of the most popular and powerful geospatial database is
free and simple.

Geographic Information Systems (GIS)

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.36

Power through extensibility — Geo spatial

Postgres=# CREATE EXTENSION postgis;
CREATE EXTENSION

Now have one of the world’s most popular
Geospatial Databases built on well established
industry standards.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.37

PostGIS enables a new type of analysis

● What is the largest city with 100 miles of the Grand Canyon?

● How many households are within 1 mile of this fault line?

● If we relocate the office, how does the average commute distance change?

● How many cities within 150KM of Tampa have median income over $50,000.00?

● What truck drove the greatest distance yesterday?

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.38

Can use Spatial AND Traditional analysis tools

-- Interesting cities within 150 KM of Boston with the 10 lowest medium home prices

select name , medium_hval, location from interesting_cities where

(select ST_Distance (ST_Transform (location, 3587),

ST_Transform((select location from interesting_cities

where name = 'Boston'), 3587))) < 150000

ORDER BY medium_hval limit 10;

Spatial Query

Traditional RDBMS expression

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.39

PgAdmin 4 is part of PostGIS eco-system

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.40

● Postgres has advanced functionality for business intelligence.

Business Intelligence

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.41

Variable from first
expression passed to next
expression. (and again to
third expression)

Business Intelligence — Advanced CTE Features

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

), source2 AS (
DELETE FROM items USING source WHERE source.order_id =

items.order_id)
INSERT INTO old_orders SELECT order_id FROM source;

Delete a given order,all the items associated with order and place order in a historical table.

Less code to maintain than on any other database
Fewer round trips with the server than on any other database

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.42

Business Intelligence — Window Functions

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | avg
-----------+-------+--------+-----------------------
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.666666666666667

(9 rows)

compare each employee's salary with the average salary in his or her department

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.43

Business Intelligence — Advanced value expressions

SELECT count(*) count_all,
count(*) FILTER(WHERE bid=1) count_1,
count(*) FILTER(WHERE bid=2) count_2

FROM pgbench_history;

count_all | count_1 | count_2
----------+---------+---------

7914 | 758 | 784

(1 row)

Compare total with count of subsets.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.44

Business Intelligence — Specialized Indexes
Specialized Indexes for all data types and access patterns

Index Type Optimized For

B-Tree Range queries with low selectivity and largely unique values. The traditional database
index.

Special ops (text_pattern_ops) for B-Tree LIKE operations

BRIN Time series data, multi-terabyte tables

HASH Equality lookups on large datasets (key / value store) use cases.

GiST Unstructured Data i.e. Geo Spatial Types

GIN JSON Data, Full Text Search, JSONB Data

SP-GiST SP-GIST is ideal for indexes whose keys have many duplicate prefixes

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.45

Business Intelligence — Specialized Indexes
Specialized Indexes for non-relational data

Index Type Optimized For

PARTIAL When only a specific set of values will be looked up

COVERING For access patterns to unindex values navigated to
by an index.

EXPRESSION Allow for variances in keys

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.46

Partitioning

• PostgreSQL supports
• Range Partitioning
• List Partitioning
• Hash Partitioning

• Needs a partition key

• Allows subpartitioning

• Performance will only improves if:
• We don't retrieve all data
• The partition key is part of the WHERE clause

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.47

Partitioning

• PostgreSQL supports
• Range Partitioning
• List Partitioning
• Hash Partitioning

• Partitioning needs a partition key

• PostgreSQL support subpartitioning

• Performance will only improves if
• We need to retrieve data from a few

partitions only
• The partition key is part of the WHERE

clause

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.48

Partitioning - limitations

1. Unique constraints on partitioned tables must include all the partition key columns. One
work-around is to create unique constraints on each partition instead of a partitioned table.

2. Partition does not support BEFORE ROW triggers on partitioned tables. If necessary, they
must be defined on individual partitions, not the partitioned table.

3. Range partition does not allow NULL values.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.49

● Postgres can function as a central integration point for your data center using
Foreign Data Wrappers.

Central Data Center

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.50

Power through extensibility — Foreign Data Wrappers

postgres=# CREATE EXTENSION postgres_fdw;
CREATE EXTENSION

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.51

Foreign Data Wrappers

CREATE SERVER postgres_server FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host ’localhost’, dbname

’fdw_test’);

create SERVER oracle_server foreign data wrapper oracle_fdw options (dbserver
'//<oracle_servefr_IP>/<sid>');

CREATE SERVER mongo_server FOREIGN DATA WRAPPER mongo_fdw OPTIONS (address '127.0.0.1', port '27017');

CREATE SERVER hadoop_server FOREIGN DATA WRAPPER hdfs_fdw OPTIONS (host '127.0.0.1');

CREATE SERVER mysql_server FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host '127.0.0.1', port '3306');

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.52

Foreign Data Wrapper Access

Application Stack

PostgreSQL

PostgreSQL

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.53

● Postgres has server-side language support for almost all developers.

Server-Side Languages

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.54

Server-Side Programming Languages

• PL/Java
• PL/Python
• PL/R
• PL/pgSQL (like PL/SQL)
• PL/Ruby
• PL/Scheme
• PL/sh
• PL/Tcl
• PL/v8 (JavaScript)
• SPI (C)

CREATE LANGUAGE plpython3u;

CREATE OR REPLACE FUNCTION pymax (a integer,
b integer) RETURNS integer AS

$$
if a > b:

return a
return b

$$ LANGUAGE plpython3u;

SELECT pymax(12, 3);

pymax

12
(1 row)

Thank You!

