
Role of DBMS
in

Advancing AI
: A New Era of Innovation

By

Ms. Dyuti Lal

Open-source databases are becoming

increasingly popular as a means to

power AI. This trend is creating a new

era of innovation and is transforming

the way we think about data

management. In this presentation, we

will explore the benefits of using open-

source databases to power AI and

discuss some of the most exciting

developments in this field.

Introduction

Domains in which AI is applied

3 Major Factors

Data is the new Oil

Database
Management
System

DBMS
DBMS stands for "Database Management

System." It is software that facilitates the

creation, organization, management, and

manipulation of databases. A database is a

structured collection of data that is organized

and stored for efficient retrieval and analysis.

Data Storage and Organization

Data Retrieval and Querying

Data Manipulation

Key
Components
and
Functions of a
DBMS Data Security

Concurrency Control

Data Integrity

Backup and Recovery

Data Independence

Key
Components
and
Functions of a
DBMS Data Modeling

Transaction Management

Scalability

Data Dictionary

Key
Components
and
Functions of a
DBMS

Unleashing
the Power of
Open Source
Databases

Open-Source
Database
Open-source databases are database

management systems (DBMS) that are

developed, distributed, and maintained

under open-source licenses. An open-source

license allows the source code of the

software to be freely available to the public,

enabling anyone to view, modify, and

distribute the code.

Licensing

Transparency

Several key
Characteristics

of
Open-Source

Databases

Community Collaboration

Customizability

Flexibility

Cost-effectiveness

Innovation

Several key
Characteristics

of
Open-Source

Databases

Security Auditing

Education

Interoperability

Community Support

Reduced Vendor Lock-in

Several key
Characteristics

of
Open-Source

Databases

Adaptability

Global Accessibility

Ethical Considerations

Few examples of popular Open-
Source Databases

MySQL is used in various

applications, from small

websites to large-scale

enterprise systems.

MySQL

It emphasizes compliance

with SQL standards and

supports advanced features

such as JSON storage, full-

text search, and spatial data.

PostgreSQL

MongoDB is a popular open-

source NoSQL database that

stores data in flexible, JSON-

like documents.

MongoDB

Few examples of popular Open-
Source Databases

SQLite is a self-contained,

serverless, and zero-

configuration open-source

SQL database engine.

SQLite
Apache Cassandra is an open-

source distributed NoSQL

database designed for managing

large amounts of structured and

unstructured data across multiple

commodity servers.

Cassandra

Redis is an open-source, in-

memory data structure store

often used as a cache,

message broker, and real-

time analytics tool.

Redis

Few examples of popular Open-
Source Databases

While primarily known as a

search engine, Elasticsearch is

also used as an open-source

distributed document-oriented

NoSQL database.

Elasticsearch

MariaDB is a community-

developed open-source

fork of MySQL.

MariaDB

InfluxDB is an open-source

time-series database

designed for handling time-

stamped data.

InfluxDB

Common
Types of
Open-Source
Databases

Relational
Databases

NoSQL
Databases

• MySQL

• PostgreSQL

• SQLite

• MongoDB

• Cassandra

• Redis

• Neo4j

Time-Series
Databases

Document
Stores

• InfluxDB

• OpenTSDB

• CouchDB

• RethinkDB

Columnar
Databases

Search
Engines and
Full-Text
Databases

• Apache HBase

• Elasticsearch

• Apache Solr

NewSQL
Databases

• CockroachDB

• TiDB

!"#$%&'#$()$*+#,-.(/01#$234353'#'

!"#$%&'()*# +,-,.,&#& ,)# /,0$0$/

"'"(1,)0-2 +(# -' -3#0) 41#50.010-26 *'&-%

#44#*-07#$#&&6 ,$+ &*,1,.010-28 93#2 ,11':

+#7#1'"#)& -' .(01+ ,$+ *(&-';0<# -3#0)

':$ &'1(-0'$&6 ,$+ '44#) , :0+#),$/# '4

4#,-()#& ,$+ 4($*-0'$,10-0#&8 930& ;,=#&

-3#; 0+#,1 4') "':#)0$/ >?6 :30*3)#@(0)#&

1,)/# ,;'($-& '4 +,-, ,$+ *';"1#5

,1/')0-3;&8

Data Availability

Training Data

Open-Source
Databases

contribution to
the

advancement
of AI

Benchmarking and Research

Innovation and Collaboration

Model Development and Testing

Transfer Learning

Data Labeling and Annotation

Open-Source
Databases

contribution to
the

advancement
of AI

Ethical AI

Real-world Applications

Educational Resources

Open-Source
Databases

contribution to
the

advancement
of AI

Reducing Barriers to Entry

6"377#,8#'$()$9'&,8$*+#,-.(/01#$

234353'#'$)(0$:;

• Complexity and Learning Curve

• Lack of Professional Support

• Limited Features in Some Cases

• Security Concerns

• Performance Tuning

6"377#,8#'$()$9'&,8$*+#,-.(/01#$

234353'#'$)(0$:;
• Scalability Challenges

• Integration with AI Frameworks

• Data Consistency and Replication

• Lack of Vendor Lock-in Solutions

• Documentation and Resources

• Migration and Compatibility

• Lack of Industry Compliance

• Long-Term Maintenance

6"377#,8#'$()$9'&,8$*+#,-.(/01#$

234353'#'$)(0$:;

Image Recognition and
Classification

Real-World
Examples of
Open-Source
Databases for

AI

Natural Language Processing
(NLP)

Recommendation Systems

IoT Data ProcessingReal-World
Examples of
Open-Source
Databases for

AI

Healthcare Analytics

Autonomous Vehicles

Fraud DetectionReal-World
Examples of
Open-Source
Databases for

AI

Financial Analysis

Social Media Analysis

Energy Management

6306 companies

reportedly use

PostgreSQL in

their tech stacks,

including Uber,

Netflix, and

Instagram.

:++7#$'<'4#='$
'/++(04$

>('480#.?@A

:$7(4$()$B343$()$
;C2D$&'$

+0(1#''#B$&,$
>('480#.?@A

;,'43803=$/'#'$
=3,<$%2DC.'E$5/4$
>('480#.?@$3,B$
63''3,B03$F#0#$
1"('#,$)(0$4"#$
=3&,$43'G'A$

95#0$/'#'$
:+31"#$

63''3,B03$4($
=3,38#$&4'$0&B#$
3,B$B0&H#0$B343A

I#4)7&J$/'#'$
:+31"#$20/&B$4($
+(F#0$&4'$0#37-
4&=#$3,37<4&1'$
+734)(0=A$

CONCLUSION
!"#$%&'()*# +,-,.,&#& ,)# , "':#)4(1 -''1 4') "':#)0$/

>? ,$+ ,)# -),$&4');0$/ -3# :,2 :# -30$= ,.'(- +,-,

;,$,/#;#$-8 A301# -3#)# ,)# *3,11#$/#& -' (&0$/ '"#$%

&'()*# +,-,.,&#&6 -3# .#$#40-& ,)# *1#,)8 >& ;')#

';",$0#& ,+'"- '"#$%&'()# +,-,.,&#& 4') >?6 :# *,$

#5"#*- -' &## #7#$;')# 0$$'7,-0'$,$+ /)':-3 0$ -30&

#5*0-0$/ 40#1+8

Any questions?

Thank you

How Postgres is
shaping AI trajectory
Vibhor Kumar
Global Vice President, Performance
Engineering & Architecture

42

43

About - PostgreSQL

The World's Most Advanced Open Source Database

● Relational, SQL based database.
● Fully enterprise ready; increasingly replacing Oracle, SQL Server, DB2 and more.
● Used in pretty much every sector: government, law enforcement, financial, healthcare...
● Possibly the most SQL Standard compliant database there is.
● Highly extensible:

○ Plugin extension modules
○ Plugin procedural languages (e.g. Python, Perl, R, Java, V8)
○ Low level code hooks

44

POSTGRESQL COMMUNITY LEADERSHIP

● 30% of Postgres code contributed
● >300 Dedicated Postgres engineers
● 3 of 7 Postgres Core Team Members

EDB PLATFORM (SOFTWARE & TOOLS)

● Databases: PostgreSQL, EPAS
● Tools: Variety of supported open source and

proprietary tools for High availability, backup,
monitoring and migration

EDB IN SUMMARY

EDB SUPPORT

● 24/7 world-class support
● Experienced support engineers, with the world’s

leading Postgres contributors
● Cloud/Remote DBA Service, Technical Account

Management, CTO Office

EDB is the world’s largest software, support, and services company focused exclusively on PostgreSQL. With over 5,000 customers, we are
proud to serve some of the world’s leading financial services, government, media & communications, and information technology
organisations. Our 16 offices worldwide enable us to deploy our global expertise in all your business locations.

EDB SERVICES

● Services offerings and packages:
○ PostgreSQL deployment, design, migration
○ Postgres Optimization: Best practices
○ Enterprise Strategy: Use-case driven PostgreSQL

architectures
○ Embedded PostgreSQL experts

45

The future of AI rests on a foundation of
solid data management.

46

AI Growing Data Need

● Key Takeaway: From gigabytes to petabytes, AI demands more data than ever before.
● Reference: IDC's Data Age 2025 study.

47

Postgres’ key feature for AI

● Rich data types
○ NUMBER

■ SMALLINT, BIGINT, …
■ DECIMAL, DOUBLE, NUMERIC
■ SMALLSERIAL, BIGSERIAL, SERIAL

○ BYTEA
○ TIMESTAMP, TIME, DATE, INTERVAL
○ MONEY
○ BOOLEAN
○ GEOMETRY (LINE, POINTS, LINE

SEGMENTS(LSEG), PATH, POLYGON, CIRCLE)
○ NETWORK ADDRESS TYPE (INET, CIDR, MACADDR,

MACADDR8)
○ BIT STRING TYPE (BIT(n), BIT VARYING
○ VARACHAR(n)/CHAR(n)/TEXT

● Rich data types
○ UUID
○ XML
○ JSON/JSONB
○ ARRAYS
○ COMPOSITE TYPE
○ RANGE TYPES (INT4RANGE, INT8RANGE, NUMRANGE, TSRANGE,

TSTZRANGE, DATERANGE, …)
○ DOMAIN TYPE
○ TEXT SEARCH TYPES (FULL TEXT SEARCH)

● Geospatial
○ PostGIS

Richness of data types allows for versatile data modeling

48

Machine Learning Integration

In-database analytics reduces the need for data movement.

49

Machine Learning Integration - Apache MADLib

JSON/JSONB - Flexible Storage

50

JSON and NoSQL Support

● Creating a table with a JSONB field

CREATE TABLE json_data (data JSONB);

● Simple JSON data element:

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200,
"available": true, "warranty_years": 1}

● Inserting this data element into the table json_data

INSERT INTO json_data (data) VALUES
(’ { "name": "Apple Phone",

"type": "phone",
"brand": "ACME",
"price": 200,
"available": true,
"warranty_years": 1

} ')

51

A QUERY THAT RETURN JSON DATA

SELECT data FROM json_data;
data
--
{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200,
"available": true, "warranty_years": 1}

52

JSON(B) AND ANSI SQL IN POSTGRES – A NATURAL FIT

● JSON is naturally integrated with ANSI SQL in Postgres

● JSON and SQL queries use

the same language, the same planner, and the same ACID compliant
transaction framework

● JSON is an elegant and easy to use extensions of the underlying object-
relational model

53

JSON AND ANSI SQL – EXAMPLE

SELECT DISTINCT
product_type,
data->>'brand' as Brand,

data->>'available' as Availability
FROM json_data
JOIN products
ON (products.product_type=json_data.data->>'name')
WHERE json_data.data->>'available'=true;

product_type | brand | availability
---------------------------+-----------+------------
--
AC3 Phone | ACME | true

54

ANSI
SQL

JSO
N

No need for programmatic logic to combine SQL and NoSQL in the
application – Postgres does it all

Bridging Between SQL And JSON
Simple ANSI SQL Table Definition

CREATE TABLE products (id integer, product_name text);

Select query returning standard data set

SELECT * FROM products;

id | product_name
----+--------------
1 | iPhone
2 | Samsung
3 | Nokia

Select query returning the same result as a JSON data set

SELECT ROW_TO_JSON(products) FROM products;

{"id":1,"product_name":"iPhone"}
{"id":2,"product_name":"Samsung"}
{"id":3,"product_name":"Nokia”} 55

JSON DATA TYPES EXAMPLE

{
"firstName": "John", -- String

Type
"lastName": "Smith", -- String

Type
"isAlive": true, -- Boolean

Type
"age": 25, -- Number

Type
"height_cm": 167.6, -- Number

Type
"address": { -- Object

Type
"streetAddress": "21 2nd Street”,
"city": "New York”,
"state": "NY”,
"postalCode": "10021-3100”

},
"phoneNumbers": [// Object Array
{ // Object
"type": "home”,
"number": "212 555-1234”

},
{
"type": "office”,
"number": "646 555-4567”

}
],
"children": [],
"spouse": null // Null

}

56

TIME SERIES DATA

57

58

Time-Series Data Management

● Support for partitioning: Store time-series data in a way that optimizes for queries that need to access
data from a specific time range.

-- Create a partition for the data from 2023-01-01 to
2023-03-01
CREATE TABLE temperature_partitioned (
id INT,
time TIMESTAMP,
temperature FLOAT

)
PARTITION BY RANGE (time)
(
PARTITION p1 VALUES LESS THAN ('2023-03-01

00:00:00'),
PARTITION p2 VALUES LESS THAN ('2023-06-01

00:00:00'),
PARTITION p3 VALUES LESS THAN ('2023-09-01

00:00:00')
);

-- Create a table to store the time-series
data
CREATE TABLE temperature (
id INT,
time TIMESTAMP,
temperature FLOAT

);

59

Time-Series Data Management

CREATE TABLE sales (
sale_date DATE,
units INTEGER

) PARTITION BY RANGE (sale_date) INTERVAL
(NUMTOYMINTERVAL(-1,'MONTH'))
(
PARTITION part_01 values LESS THAN

(TO_DATE('01-FEB-2020','DD-MON-YYYY'))
);

● Interval partition in EDB Postgres Advanced Server
● Compression using custom functions like gzip
● Tablespace for storing data on filesystems with higher

compression
● Indexes -

○ Local indexes
○ B-Tree
○ GiST indexes
○ BRIN Indexes
○ Custom Indexes

● Functions
○ AVG
○ SUM/MAX/MIN
○ DATE functions etc…
○ Mathematical functions - SIN/COS/TAN etc…

Procedure Languages
(PL/perl, PL/python, PL/C, …)

60

61

● Can be used with an common Python machine learning and related libraries:
○ Tensorflow
○ pvTorch
○ Numpy
○ Pandas

● Gives you complete control to write the functionality you need.

● Install Python modules in the Python environment used by the PostgreSQL server.

PL/Python3u - Python programing language

Advanced Analytics with
Postgres

62

Window functions

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | avg
-----------+-------+--------+-----------------------
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.666666666666667
(9 rows)

63

Advanced CTE feature

Delete a given order,all the items associated with order and place order in a historical table.

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

), source2 AS (
DELETE FROM items USING source WHERE source.order_id = items.order_id)

INSERT INTO old_orders SELECT order_id FROM source;

Less code to maintain than on any other database
Fewer round trips with the server than on any other database

GROUPING SETS, CUBE, and ROLLUP - more ways processing

64

Window functions

65

Function
Description

row_number () → bigint
Returns the number of the current row within its partition, counting from 1.

rank () → bigint
Returns the rank of the current row, with gaps; that is, the row_number of the first row in its peer group.

dense_rank () → bigint
Returns the rank of the current row, without gaps; this function effectively counts peer groups.

percent_rank () → double precision
Returns the relative rank of the current row, that is (rank - 1) / (total partition rows - 1). The value thus ranges
from 0 to 1 inclusive.

cume_dist () → double precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with current row) /
(total partition rows). The value thus ranges from 1/N to 1.

● And more…

Specialized Indexes

Specialized indexes for all data types and access patterns

66

Index Type Optimized For

B-Tree Range queries with low selectivity and largely unique values. The
traditional database index.

BRIN Time series data, multi-terabyte tables

HASH Equality lookups on large datasets (key / value store) use cases.

GiST Unstructured Data i.e. Geo Spatial Types

GIN JSON Data, Full Text Search, JSONB Data

SP-GiST SP-GIST is ideal for indexes whose keys have many duplicate prefixes

Specialized Indexes

Specialized indexes for non relational data

67

Index Type Optimized For

PARTIAL When only a specific set of values will be
looked up

COVERING For access patterns to unindex values
navigated to by an index.

EXPRESSION Allow for variances in keys

PostGIS - Spatial Data

68

69

Spatial Data and Geolocation

● Extension - PostGIS

● PostGIS Functions

○ ST_Accum - Aggregate. Constructs an array of
geometries

○ ST_Collect - Return a specified ST_Geometry value
from a collection of other geometries.

○ etc…

● Indexes

○ GiST - most commonly used for PostGIS

○ R-Tree - Break up data into rectangles, and sub-
rectangles

○ Quad Tree - (images/spatial)

pgvector

70

71

pgvector - An Extension For Similarity Search

● Vector similarity search is a type of search that allows you to find similar vectors.

● Vectors data type represents

○ points in a multidimensional space.

● Can be used for a variety of applications, such as:

○ Recommendation systems

○ Image search

○ Natural language processing

72

More Extensions For AI

● PostgresML: An open-source extension provides support for training and deploying
machine learning models in PostgreSQL.

● pgRouting: An open-source extension for routing algorithms.

○ FInd the shortest path between two points in a road network.

73

Open Source Advantage

A community-driven approach ensures continuous updates and innovations.

74

Conclusion

With every challenge comes an opportunity for innovation.

75

THANK YOU

75

(We can’t wait to see what you create)

