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About me ● VP/CTO of Cloud Native at EDB
○ Previously at 2ndQuadrant

● PostgreSQL user since ~2000
○ Community member since 2006
○ Co-founder of PostgreSQL Europe

● DevOps evangelist
● Open source contributor

○ Barman (2011)
○ CloudNativePG (2022)
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Follow me: @_GBartolini_
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Kelsey Hightower
@kelseyhightower
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A majority (83%) attribute over 
10% of their revenue to running 
data on Kubernetes

One-third of organizations 
saw their productivity 

increase twofold.



Timeline and team involvement

● 2014, June: Google open sources Kubernetes
● 2015, July: Version 1.0 is released
● 2015, July: Google and Linux Foundation start the CNCF
● 2016, November: The operator pattern is introduced in a blog post
● 2018, August: The Community takes the lead
● 2019, April: Version 1.14 introduces Local Persistent Volumes
● 2019, August: my team starts the Kubernetes initiative
● 2020, June: we publish this blog about benchmarking local PVs on bare metal
● 2020, June: Data on Kubernetes Community founded
● 2021, February: EDB Cloud Native Postgres (CNP) 1.0 released
● 2022, May: EDB donates CNP and open sources it under CloudNativePG
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https://www.2ndquadrant.com/en/blog/local-persistent-volumes-and-postgresql-usage-in-kubernetes/


“The same as running 
a database on a VM” 

88



I would add: “… provided you …”
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● Know PostgreSQL
● Know Kubernetes
● Have a good operator like CloudNativePG

You = You organization, made up of one or more multidisciplinary teams



#1 - The right 
architecture for 
Kubernetes
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Kubernetes architectural concepts

● A Kubernetes Cluster (k-cluster)
● Availability zones (AZ)- also known as failure zones or data centers

○ Connected by redundant, low-latency, private network connectivity
○ At least 3 per k-cluster

● Kubernetes control plane to be distributed across the AZ
● Kubernetes worker nodes in each AZ running applications (workloads)
● Normally:

○ 1 k-cluster = 1 region with 3+ AZ
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1 k-cluster = 1 region with 3+ AZ

● Taken for granted if you know Kubernetes
● All major public cloud providers offering managed K8s services have 3+ AZ
● What about on-premise deployments?

○ You need to plan in advance
○ Stay away from the “2 data center in a region” setup typical of “Lift-and-Shift” exercises

■ Often results in 2 separate Kubernetes clusters
● Severely impacts the benefits of Kubernetes, particularly self-healing
● Shifts maintenance and procedural complexity up to the application level



No!
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Yes!
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Yes! Yes! Yes!
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#2 - Synchronizing 
the state
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Synchronizing the state of a Postgres database

● Being a DBMS, PostgreSQL is a stateful workload in Kubernetes
● Stateless workloads achieve HA and DR mainly through traffic redirection
● Stateful workloads require the state to be replicated in multiple locations:

○ Storage-level replication
○ Application-level replication (in our case, application = Postgres)

● Postgres has a very robust and powerful native replication system
○ We’ve built it
○ Founded on the Write Ahead Log
○ Read-only standby servers
○ Supports also synchronous replication controlled at the transaction level

● We recommend application-level over storage-level replication for Postgres



KubeCon NA 2022 - talk with Chris Milsted (Ondat)

18



Yes!
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#3 - The right 
storage for 
you



Storage management

● Storage is the most critical component for a database
● Direct support for Persistent Volume Claims (PVC)

○ We deliberately do not use Statefulsets
● The PVC storing the PGDATA is central to CloudNativePG

○ Our motto is: “PGDATA is worth a 1000 pods”
● Storage agnostic
● Freedom of choice

○ Local storage
○ Network storage

● Automated generation of PVC
○ Support for PVC templates
○ Storage classes
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Main components

● Kubernetes cluster
● Availability zone
● Application pod
● Postgres pod
● Kubernetes worker node
● Network storage
● Local storage

○ i.e. dedicated and local to the worker node
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Scheduling Postgres instances with CloudNativePG

● Entirely declarative!
● Affinity section in the `Cluster` specification

○ pod affinity/anti-affinity
○ node selectors
○ tolerations against taints placed on nodes
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K8s cluster

Shared workloads, shared storage #1
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K8s cluster

Shared workloads, shared storage #2
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K8s cluster

Shared workloads, shared storage #3
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K8s cluster

Shared workloads, local storage
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Good value for money!



K8s cluster

Dedicated workloads, local storage
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K8s cluster

AZ #1 AZ #2 AZ #3

Shared nothing architecture
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K8s cluster

Shared nothing architecture (hybrid/multi)
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K8s cluster

DP

K8s cluster

Shared nothing architecture (hybrid/multi)
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#4 - The “Goal”

(“Your goal”)
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Identify your business continuity goals

● Paradox of choice!
● Recovery Point Objective (RPO)

○ Time it takes for you to safely store each WAL file in separate locations
● Recovery Time Objective (RTO)

○ Time it takes for you to promote a standby as primary after a failure
■ Single k-cluster (region)
■ To a different k-cluster (region)

○ Time it takes for you to issue a PITR operation from a backup
● Identify your SPOFs!
● Practice! Measure! Improve!
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RPO with CloudNativePG

● Recovery Point Objective (RPO)
○ WAL files are archived to object stores at least every 5 minutes, depending on the workload
○ RPO <= 5 minutes

● Recovery Time Objective (RTO)
○ Same k-cluster:

■ Automated failover
■ Recommended setup: 3 instances with 1 sync standby
■ Instantaneous detection by Kubernetes

● (we had to introduce delayed failover configuration)
■ RTO = time taken by a standby to exit recovery and become primary

● Normally between 5 seconds and a minute
● Depends on the workload and lag of a standby

○ Different k-cluster:
■ Use replica clusters with WAL shipping and/or streaming
■ Current: manual detection and triggering of the promotion
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RPO with CloudNativePG

● HA replicas:
○ Asynchronous replicas: RPO ~ 0
○ Synchronous replicas RPO = 0

● Local object store:
○ WAL files are archived to object stores at least every 5 minutes

■ Depending on the workload
○ RPO <= 5 minutes

● Global object store:
○ (Stored in another region)
○ Local object store RPO + relay of WAL file to another region
○ RPO <= 10 minutes
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RTO with CloudNativePG

● Same k-cluster:
○ Automated failover
○ Recommended setup: 3 instances with 1 sync standby
○ Instantaneous detection by Kubernetes

■ (we had to introduce delayed failover configuration)
○ RTO = time taken by a standby to exit recovery and become primary

■ Normally between 5 seconds and a minute
■ Depends on the workload and lag of a standby

● Different k-cluster:
○ Use replica clusters with WAL shipping and/or streaming
○ Current: manual detection and triggering of the promotion

● PITR varies on the database size and the amount of WAL to replay



Key takeaways

1. Take advantage of 3+ AZ K-Clusters
2. Rely on PostgreSQL Primary/Standby clusters - like you did on VMs
3. Choose your storage carefully - like you did on VMs
4. Plan your infrastructure around your goals

○ RPO
○ RTO
○ Benchmarks

5. Shared nothing architecture, if you can
○ Otherwise, at least separate PostgreSQL workloads from the rest of your cluster

6. Application and database must be in the same K-Cluster
○ Applications are automatically rerouted to the primary via the updated service
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K8s cluster

#1 architecture
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K8s cluster

Shared workloads, local storage
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