
1

Kubernetes & Data

Gabriele Bartolini
VP Cloud Native at EDB

June 2023



About me ● VP/CTO of Cloud Native at EDB
○ Previously at 2ndQuadrant

● PostgreSQL user since ~2000
○ Community member since 2006
○ Co-founder of PostgreSQL Europe

● DevOps evangelist
● Open source contributor

○ Barman (2011)
○ CloudNativePG (2022)

2

Follow me: @_GBartolini_



3

Kelsey Hightower
@kelseyhightower



4



5



6

A majority (83%) attribute over 
10% of their revenue to running 
data on Kubernetes

One-third of organizations 
saw their productivity 

increase twofold.



Timeline and team involvement

● 2014, June: Google open sources Kubernetes
● 2015, July: Version 1.0 is released
● 2015, July: Google and Linux Foundation start the CNCF
● 2016, November: The operator pattern is introduced in a blog post
● 2018, August: The Community takes the lead
● 2019, April: Version 1.14 introduces Local Persistent Volumes
● 2019, August: my team starts the Kubernetes initiative
● 2020, June: we publish this blog about benchmarking local PVs on bare metal
● 2020, June: Data on Kubernetes Community founded
● 2021, February: EDB Cloud Native Postgres (CNP) 1.0 released
● 2022, May: EDB donates CNP and open sources it under CloudNativePG

7

https://www.2ndquadrant.com/en/blog/local-persistent-volumes-and-postgresql-usage-in-kubernetes/


“The same as running 
a database on a VM” 

88



I would add: “… provided you …”

9

● Know PostgreSQL
● Know Kubernetes
● Have a good operator like CloudNativePG

You = You organization, made up of one or more multidisciplinary teams



#1 - The right 
architecture for 
Kubernetes



11

Kubernetes architectural concepts

● A Kubernetes Cluster (k-cluster)
● Availability zones (AZ)- also known as failure zones or data centers

○ Connected by redundant, low-latency, private network connectivity
○ At least 3 per k-cluster

● Kubernetes control plane to be distributed across the AZ
● Kubernetes worker nodes in each AZ running applications (workloads)
● Normally:

○ 1 k-cluster = 1 region with 3+ AZ



12

1 k-cluster = 1 region with 3+ AZ

● Taken for granted if you know Kubernetes
● All major public cloud providers offering managed K8s services have 3+ AZ
● What about on-premise deployments?

○ You need to plan in advance
○ Stay away from the “2 data center in a region” setup typical of “Lift-and-Shift” exercises

■ Often results in 2 separate Kubernetes clusters
● Severely impacts the benefits of Kubernetes, particularly self-healing
● Shifts maintenance and procedural complexity up to the application level



No!

13



Yes!

14



Yes! Yes! Yes!

15



#2 - Synchronizing 
the state



17

Synchronizing the state of a Postgres database

● Being a DBMS, PostgreSQL is a stateful workload in Kubernetes
● Stateless workloads achieve HA and DR mainly through traffic redirection
● Stateful workloads require the state to be replicated in multiple locations:

○ Storage-level replication
○ Application-level replication (in our case, application = Postgres)

● Postgres has a very robust and powerful native replication system
○ We’ve built it
○ Founded on the Write Ahead Log
○ Read-only standby servers
○ Supports also synchronous replication controlled at the transaction level

● We recommend application-level over storage-level replication for Postgres



KubeCon NA 2022 - talk with Chris Milsted (Ondat)

18



Yes!

19



#3 - The right 
storage for 
you



Storage management

● Storage is the most critical component for a database
● Direct support for Persistent Volume Claims (PVC)

○ We deliberately do not use Statefulsets
● The PVC storing the PGDATA is central to CloudNativePG

○ Our motto is: “PGDATA is worth a 1000 pods”
● Storage agnostic
● Freedom of choice

○ Local storage
○ Network storage

● Automated generation of PVC
○ Support for PVC templates
○ Storage classes

21



Main components

● Kubernetes cluster
● Availability zone
● Application pod
● Postgres pod
● Kubernetes worker node
● Network storage
● Local storage

○ i.e. dedicated and local to the worker node

22



Scheduling Postgres instances with CloudNativePG

● Entirely declarative!
● Affinity section in the `Cluster` specification

○ pod affinity/anti-affinity
○ node selectors
○ tolerations against taints placed on nodes

23



K8s cluster

Shared workloads, shared storage #1

24

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application

Database

Application

Database

Application

Database

Application

Database

Application

Database

Application

Database

Application

Database



K8s cluster

Shared workloads, shared storage #2

25

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application DatabaseApplication DatabaseApplication Database

Application DatabaseApplication DatabaseApplication Database Database

Database



K8s cluster

Shared workloads, shared storage #3

26

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application DatabaseApplication DatabaseApplication Database

Application DatabaseApplication DatabaseApplication Database Database

Database

Shared storage



K8s cluster

Shared workloads, local storage

27

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application DatabaseApplication DatabaseApplication Database

Application DatabaseApplication DatabaseApplication Database Database

Database

Local 
storage

Local 
storage

Local 
storage

Local 
storage

Node taints for Postgres

Good value for money!



K8s cluster

Dedicated workloads, local storage

28

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application DatabaseApplication DatabaseApplication Database

Application Application Application

Database

Local 
storage

Local 
storage

Local 
storage

Local 
storage

Node taints for Postgres

Best Postgres results!



K8s cluster

AZ #1 AZ #2 AZ #3

Shared nothing architecture

29

Worker node

Primary

Local 
storage

Worker node

Sync 
standby

Local 
storage

Worker node

(A)sync 
standby

Local 
storage



K8s cluster

Shared nothing architecture (hybrid/multi)

30

P R R

Object 
store

WAL

K8s cluster

DP R R

Object 
store

WAL

Dual channel (optional)

“Replica cluster” feature in CloudNativePG



K8s cluster

DP

K8s cluster

Shared nothing architecture (hybrid/multi)

31

P R R

Object 
store

WAL

P R R

Object 
store

WAL

PDP

“Replica cluster” feature in CloudNativePG



32

K8s cluster

P R R

Object 
store

WAL

K8s cluster

DP R R

Object 
store

WAL

Dual channel (optional)



#4 - The “Goal”

(“Your goal”)



34

Identify your business continuity goals

● Paradox of choice!
● Recovery Point Objective (RPO)

○ Time it takes for you to safely store each WAL file in separate locations
● Recovery Time Objective (RTO)

○ Time it takes for you to promote a standby as primary after a failure
■ Single k-cluster (region)
■ To a different k-cluster (region)

○ Time it takes for you to issue a PITR operation from a backup
● Identify your SPOFs!
● Practice! Measure! Improve!



35

RPO with CloudNativePG

● Recovery Point Objective (RPO)
○ WAL files are archived to object stores at least every 5 minutes, depending on the workload
○ RPO <= 5 minutes

● Recovery Time Objective (RTO)
○ Same k-cluster:

■ Automated failover
■ Recommended setup: 3 instances with 1 sync standby
■ Instantaneous detection by Kubernetes

● (we had to introduce delayed failover configuration)
■ RTO = time taken by a standby to exit recovery and become primary

● Normally between 5 seconds and a minute
● Depends on the workload and lag of a standby

○ Different k-cluster:
■ Use replica clusters with WAL shipping and/or streaming
■ Current: manual detection and triggering of the promotion



36

RPO with CloudNativePG

● HA replicas:
○ Asynchronous replicas: RPO ~ 0
○ Synchronous replicas RPO = 0

● Local object store:
○ WAL files are archived to object stores at least every 5 minutes

■ Depending on the workload
○ RPO <= 5 minutes

● Global object store:
○ (Stored in another region)
○ Local object store RPO + relay of WAL file to another region
○ RPO <= 10 minutes



37

RTO with CloudNativePG

● Same k-cluster:
○ Automated failover
○ Recommended setup: 3 instances with 1 sync standby
○ Instantaneous detection by Kubernetes

■ (we had to introduce delayed failover configuration)
○ RTO = time taken by a standby to exit recovery and become primary

■ Normally between 5 seconds and a minute
■ Depends on the workload and lag of a standby

● Different k-cluster:
○ Use replica clusters with WAL shipping and/or streaming
○ Current: manual detection and triggering of the promotion

● PITR varies on the database size and the amount of WAL to replay



Key takeaways

1. Take advantage of 3+ AZ K-Clusters
2. Rely on PostgreSQL Primary/Standby clusters - like you did on VMs
3. Choose your storage carefully - like you did on VMs
4. Plan your infrastructure around your goals

○ RPO
○ RTO
○ Benchmarks

5. Shared nothing architecture, if you can
○ Otherwise, at least separate PostgreSQL workloads from the rest of your cluster

6. Application and database must be in the same K-Cluster
○ Applications are automatically rerouted to the primary via the updated service

38



K8s cluster

#1 architecture

39

P R R

Object 
store

WAL

K8s cluster

DP R R

Object 
store

WAL

“Replica cluster” feature in CloudNativePG



K8s cluster

Shared workloads, local storage

40

Worker node Worker node Worker node Worker node Worker node Worker node Worker node

Shared storage

Application DatabaseApplication DatabaseApplication Database

Application DatabaseApplication DatabaseApplication Database Database

Database

Local 
storage

Local 
storage

Local 
storage

Local 
storage

Node taints for Postgres


