
1

EDB Open Source
Learning Day

How to run PostgreSQL on Kubernetes
(DEMO)

Sergio Romera | Senior Sales Engineer

About me ● Sergio Romera ()

● Based in France, (Île-de-France
near to Paris)

● Database fanatic since 1997
● Developer, DBA, Architect,

Sales Engineer
● Companies: BNPParibas,

Oracle, Quest Software
● Senior Sales Engineer at EDB

Why did PostgreSQL win?
It does everything…

Migration New App Development Replatforming to Cloud and
Containers

System of Record System of Analysis System of Engagement

It works everywhere…

Public Cloud - IaaS Public Cloud - DBaaS Private
Cloud

Virtual Machines Containers

A kubernetes operator for Postgres

Our PostgreSQL operator must simulate the work of a DBA

Kubernetes adoption is rising
and it is already the de facto
standard orchestration tool

Handling PostgreSQL clusters
“the kubernetes way” enables
many cloud native usage
patterns, e.g. spinning up,
disposable clusters during tests,
one cluster per microservice and
one database per cluster

CNP tries to encode years of
experience managing
PostgreSQL clusters into an
Operator which
should automate all the known
tasks a user could be willing to
do

CloudNativePG/EDB Postgres for Kubernetes

● Kubernetes operator for PostgreSQL
● “Level 5”, Production ready
● Day 1 & 2 operations of a PostgreSQL

database

○ In traditional environments usually
reserved to humans

● Open source

○ Originally created and developed by EDB

○ Vendor neutral/openly governed
community

○ Apache 2.0 license

○ Submitted to the CNCF Sandbox

● Fully declarative

Some Features
• Automated failover
• Services for RW and RO workloads
• Affinity control
• Backup and Recovery
• Rolling updates
• Scale up/down of read replicas
• Fencing and hibernation
• Native Prometheus exporters
• Log in JSON format to stdout
• OpenShift compatibility
• TDE (in EDB Postgres for

Kubernetes)
• … and much more

Architectures - Multi-availability zone Kubernetes clusters

● The multi-availability zone Kubernetes architecture with three (3) or more
zones is the one that we recommend for PostgreSQL usage. This scenario is
typical of Kubernetes services managed by Cloud Providers.

Architectures - Single availability zone Kubernetes clusters

● If your Kubernetes cluster has only one availability zone, EDB Postgres for Kubernetes still provides
you with a lot of features to improve HA and DR outcomes for your PostgreSQL databases, pushing
the single point of failure (SPoF) to the level of the zone as much as possible - i.e. the zone must
have an outage before your EDB Postgres for Kubernetes clusters suffer a failure.

● This scenario is typical of self-managed on-premise Kubernetes clusters, where only one data center
is available.

PostgreSQL architecture

● EDB Postgres for Kubernetes supports clusters based on
asynchronous and synchronous streaming replication to
manage multiple hot standby replicas within the same
Kubernetes cluster, with the following specifications:

○ One primary, with optional multiple hot standby replicas for HA

○ Available services for applications:

■ -rw: applications connect only to the primary instance of the
cluster

■ -ro: applications connect only to hot standby replicas for
read-only-workloads

■ -r: applications connect to any of the instances for read-only
workloads

○ Shared-nothing architecture recommended for better resilience of the
PostgreSQL cluster:

PostgreSQL workloads

Read-write work loads Read-only work loads

PostgreSQL Disaster Recovery

● PostgreSQL cluster spanning over two different

Kubernetes clusters, where the primary cluster is
in the first Kubernetes cluster and the replica
cluster is in the second. The second Kubernetes
cluster acts as the company's disaster recovery
cluster, ready to be activated in case of disaster
and unavailability of the first one.

● A replica cluster can have the same architecture of

the primary cluster. In place of the primary
instance, a replica cluster has a designated
primary instance, which is a standby server with an
arbitrary number of cascading standby servers in
streaming replication (symmetric architecture).

Updated: 5/06/2023

Command line interface

13

Demo

Demo Architecture

Node 1 Node 2 Node 3

Load Balancer -> cluster-example-rw

Features demo

● Kubernetes plugin install
● CloudNativePG operator install
● Postgres cluster install
● Insert data in the cluster
● Switchover (promote)
● Failover
● Backup
● Recovery
● Scale out/down
● Point In Time Recovery (PITR)
● Fencing
● Monitoring
● Rolling updates (minor and major)

Last CloudNativePG tested version is 1.20.0

Replication Slots for High Availability

● Replication slots are a native PostgreSQL feature introduced in 9.4 that
provides an automated way to ensure that the primary does not remove WAL
segments until all the attached streaming replication clients have received
them, and that the primary does not remove rows which could cause a
recovery conflict even when the standby is (temporarily) disconnected.

● A replication slot exists solely on the instance that created it, and PostgreSQL
does not replicate it on the standby servers.

● As a result, after a failover or a switchover, the new primary does not contain
the replication slot from the old primary.

● This can create problems for the streaming replication clients that were
connected to the old primary and have lost their slot.

Point in Time Recovery (PITR) from a backup

● The operator enables you to create a new PostgreSQL cluster by recovering
an existing backup to a specific point-in-time, defined with a timestamp, a
label or a transaction ID.

● This capability is built on top of the full restore one and supports all the
options available in PostgreSQL for PITR.

 id | timestamp
----+----------------------------
 1 | 2023-06-05 16:26:30.974998
 2 | 2023-06-05 16:26:36.175874
 3 | 2023-06-05 16:27:09.999357

Backup 1
Backup 2

Restore
Step 1

Step 2

Step 3

 id | timestamp
----+----------------------------
 1 | 2023-06-05 16:26:30.974998

Fencing

● Fencing in EDB Postgres for Kubernetes is the ultimate process of protecting
the data in one, more, or even all instances of a PostgreSQL cluster when they
appear to be malfunctioning. When an instance is fenced, the PostgreSQL
server process (postmaster) is guaranteed to be shut down, while the pod is
kept running.

● This makes sure that, until the fence is lifted, data on the pod is not modified
by PostgreSQL and that the file system can be investigated for debugging and
troubleshooting purposes.

Hibernation

● EDB Postgres for Kubernetes is designed to keep PostgreSQL clusters up,
running and available anytime.

● There are some kinds of workloads that require the database to be up only
when the workload is active. Batch-driven solutions are one such case.

● In batch-driven solutions, the database needs to be up only when the batch
process is running.

● The declarative hibernation feature enables saving CPU power by removing
the database Pods, while keeping the database PVCs.

cluster-example.yaml

● Cluster name: cluster-example
● 3 Instances using replication slots

○ 1 Primary

○ 2 Standby’s

● PostgreSQL 14.2
● Min 1 sync replica
● Activate pg_stat_statement extension
● 1GB disk
● Activate monitoring metrics
● CPU

○ Request: 1

○ Limit: 2

Monitoring

● For each PostgreSQL instance, the
operator provides an exporter of
metrics for Prometheus via HTTP, on
port 9187, named metrics.

● The operator comes with a
predefined set of metrics, as well as
a highly configurable and
customizable system to define
additional queries via one or more
ConfigMap or Secret resources

This is what happens under the hood

AZ 1 AZ 2 AZ 3

cluster-example-rw
Service

cluster-example-ro
Service

Worker node

cluster-example-1
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-2
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-3
Pod

PGDATA
PVC

WAL
PVC

Primary Standby Standby

1/4

This is what happens under the hood

AZ 1 AZ 2 AZ 3

cluster-example-rw
Service

cluster-example-ro
Service

Worker node

cluster-example-1
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-2
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-3
Pod

PGDATA
PVC

WAL
PVC

Primary Standby Standby

2/4

This is what happens under the hood

AZ 1 AZ 2 AZ 3

cluster-example-rw
Service

cluster-example-ro
Service

Worker node

cluster-example-1
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-2
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-3
Pod

PGDATA
PVC

WAL
PVC

Standby Primary Standby

3/4

This is what happens under the hood

AZ 1 AZ 2 AZ 3

cluster-example-rw
Service

cluster-example-ro
Service

Worker node

cluster-example-1
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-2
Pod

PGDATA
PVC

WAL
PVC

Worker node

cluster-example-3
Pod

PGDATA
PVC

WAL
PVC

Standby Primary Standby

4/4

This demo is in https://github.com/sergioenterprisedb/kubecon2022-demo

https://github.com/sergioenterprisedb/kubecon2022-demo

Thank you

Sergio Romera
EDB – Senior Sales Engineer

Oracle Cloud Infrastructure Architect
Oracle Autonomous Database Cloud Specialist

Database Administrator

Microsoft Azure Fundamentals
Microsoft Data Azure Fundamentals

AWS Cloud
Practitioner

EDB Certified Associate
Postgres Advanced Server 12

EDB Certified Professional
Postgres Advanced Server 13

PostgreSQL 14
Essentials

https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges
https://www.linkedin.com/in/sergio-romera/
https://www.credly.com/users/sergio-romera/badges
https://www.credly.com/users/sergio-romera/badges

Operator Capabilities Levels

Source: https://sdk.operatorframework.io/docs/overview/operator-capabilities/

https://sdk.operatorframework.io/docs/overview/operator-capabilities/

Contact EDB if you need:

● Support for PostgreSQL Opensource
● Oracle migrations to PostgreSQL
● Managed Postgres on Azure or AWS (and Google soon)
● Enterprise tools for Postgres (HA, failover, backup and recovery, monitoring,

trainings, …)
● Do you need a workshop to better understand your architecture?

