
© EnterpriseDB Corporation 2023 - All Rights Reserved

1

Advanced SQL II
Lætitia Avrot

© EnterpriseDB Corporation 2023 - All Rights Reserved

Lætitia Avrot

● Field CTO – EDB

● PostgreSQL Europe Treasurer

● Postgres Women Founder

● Recognized contributor to the
PostgreSQL project

2

© EnterpriseDB Corporation 2023 - All Rights Reserved

Summary of previous
episodes

3

© EnterpriseDB Corporation 2023 - All Rights Reserved

SQL is…
● A declarative language
● Turing-complete
● Unknown
● Based originally on

relational algebra

4

© EnterpriseDB Corporation 2023 - All Rights Reserved

NULL…
● Marks there is no value
● Exists for all datatypes

5

NULL is not… ● An empty string
● A string with spaces
● The string 'NULL'

© EnterpriseDB Corporation 2023 - All Rights Reserved

6

Quizz!

© EnterpriseDB Corporation 2023 - All Rights Reserved

8

How many kind of
joins do exist in
SQL?

● 2
● 4
● 7
● 12

© EnterpriseDB Corporation 2023 - All Rights Reserved

There are 7 kinds of joins:
● Inner join

● Left or right outer join
● Full outer join

● Cartesian product
● Natural join
● Lateral join

● Anti join
10

© EnterpriseDB Corporation 2023 - All Rights Reserved

11

Do we need to add
a group by to this
query?

select

 name,

 avg(salary)

from employeeHistory

© EnterpriseDB Corporation 2023 - All Rights Reserved

13

select

 name,

 avg(salary)

from employeeHistory

group by name

Group by is not implicit in SQL.
You can always group on more columns than the one listed in

the select.
You can't omit one of the non aggregated columns from the

select in the group by.

© EnterpriseDB Corporation 2023 - All Rights Reserved

14

How can we filter
an aggregate
result?

● In the where clause
● In the select clause
● In the having clause
● All of the above

© EnterpriseDB Corporation 2023 - All Rights Reserved

select
 name,
 avg(salary)
from employeeHistory
group by name
having avg(salary) < 10000

16

Having was invented for that purpose. It is the simplest way
of filtering an aggregation result.

© EnterpriseDB Corporation 2023 - All Rights Reserved

With avgSalary(name, avgSalary) as (
 select
 name,
 avg(salary)
 from employeeHistory
 group by name
)
select *
from avgSalary
where avgSalary < 10000

17

A little overcomplicated, but doable.

© EnterpriseDB Corporation 2023 - All Rights Reserved

with avgSalary(name, avgSalary) as (
 select
 name,
 avg(salary)
 from employeeHistory
 group by name
)
select name filter (where avgSalary < 10000),
 avgSalary (where avgSalary < 10000)
from avgSalary

18
Way too complicated.

© EnterpriseDB Corporation 2023 - All Rights Reserved

19

How can you
create an auto
incremented
column in
PostgreSQL?

● Manually with a sequence
● Automatically with a

sequence and a default
value

● Automatically with the
serial datatype

● Automatically with a
generated column

● All of the above

© EnterpriseDB Corporation 2023 - All Rights Reserved

laetitia=# create table test(id integer primary

key, value text);

CREATE TABLE

laetitia=# create sequence my_seq;

CREATE SEQUENCE

laetitia=# insert into test (select

nextval('my_seq'), 'blabla');

INSERT 0 1

21
Manually with a sequence

© EnterpriseDB Corporation 2023 - All Rights Reserved

laetitia=# create sequence my_seq;

CREATE SEQUENCE

laetitia=# create table test (id integer

default nextval('my_seq') primary key,

 value text);

CREATE TABLE

laetitia=# insert into test(value) values

('blabla');

INSERT 0 1

22Automatically with a sequence and a default value

© EnterpriseDB Corporation 2023 - All Rights Reserved

laetitia=# create table test (id serial primary

key, value text);

CREATE TABLE

laetitia=# insert into test (value) values

('blabla');

INSERT 0 1

23
Automatically with the serial datatype

© EnterpriseDB Corporation 2023 - All Rights Reserved

laetitia=# create table test (id integer generated by default as identity primary

key, value text);

CREATE TABLE

laetitia=# \d test

 Table "public.test"

 Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+----------------------------------

 id | integer | | not null | generated by default as identity

 value | text | | |

Indexes:

"test_pkey" PRIMARY KEY, btree (id)

laetitia=# insert into test (value) values ('blabla');

INSERT 0 1

24
Automatically with a generated column

© EnterpriseDB Corporation 2023 - All Rights Reserved

laetitia=# insert into test (id, value) values

(2,'blabla');

ERROR: cannot insert a non-DEFAULT value into

column "id"

DETAIL: Column "id" is an identity column

defined as GENERATED ALWAYS.

HINT: Use OVERRIDING SYSTEM VALUE to override.

25
A bonus from generated columns

© EnterpriseDB Corporation 2023 - All Rights Reserved

26

Sequence Serial Identity column

Nextval automatically as
default value

No Yes Yes

Not null constraint No Yes Yes

Prevent manual inserts No No With always

© EnterpriseDB Corporation 2023 - All Rights Reserved

27

Why should you
use CTEs
(Common Table
Expressions)?

● To show off in front of
developers

● To make your code more
readable

● To confuse the optimiser
● All of the above

© EnterpriseDB Corporation 2023 - All Rights Reserved

with CTEName1 (list of CTE columns) as (

…
),

CTEName2 (list of CTE columns) as (

…
)

Select columnsName

From CTEName2

29

© EnterpriseDB Corporation 2023 - All Rights Reserved

30

Not in is often
faster than Not
exist

● True
● False

© EnterpriseDB Corporation 2023 - All Rights Reserved

select surname,

 firstname

from members

where memid not in

 (

select memid

from bookings

)

32
Not in example

© EnterpriseDB Corporation 2023 - All Rights Reserved

select surname,

 firstname

from members

where memid not exist

 (

 select 1

from bookings

 where members.memid = bookings.memid

)

33
Not exist example

© EnterpriseDB Corporation 2023 - All Rights Reserved

34

What is the
difference
between cube and
rollup?

● Rollup is hierarchic while
Cube takes a combination
of all columns

● Cube, contrary to Rollup,
needs a grouping set

● Cube has not real use
case, contrary to Rollup

● All of the above

© EnterpriseDB Corporation 2023 - All Rights Reserved

36

Rollup allows hierarchic aggregations, so that not all
combinations of columns will be displayed.

Cube will calculate the aggregation for all possible
combinations of the columns.

© EnterpriseDB Corporation 2023 - All Rights Reserved

37

select

 coalesce (department, 'All Departments') as Department,

 coalesce (gender,'All Genders') as Gender,

 sum(salary) as Salary_Sum

from employee

Group by rollup (department, gender)

© EnterpriseDB Corporation 2023 - All Rights Reserved

38

Department Gender Salary_Sum

Finance Female 11800

Finance Male 5000

Finance All Genders 16800

HR Female 6000

HR Male 14200

HR All Genders 20200

All Departments All Genders 37000

© EnterpriseDB Corporation 2023 - All Rights Reserved

39

select

 coalesce (department, 'All Departments') as Department,

 coalesce (gender,'All Genders') as Gender,

 sum(salary) as Salary_Sum

from employee

Group by cube (department, gender)

© EnterpriseDB Corporation 2023 - All Rights Reserved

40

Row No Department Gender Salary_Sum

1 Finance Female 11800

2 HR Female 6000

5 All Departments Female 17800

6 Finance Male 5000

7 HR Male 14200

10 All Departments Male 19200

11 All Departments All Genders 37000

© EnterpriseDB Corporation 2023 - All Rights Reserved

Some resources ● https://mystery.knightlab.com/
● https://pgexercises.com/
● https://modern-sql.com/
● https://theartofpostgresql.com/

41

(To get better in SQL)

https://mystery.knightlab.com/
https://pgexercises.com/
https://modern-sql.com/
https://theartofpostgresql.com/

© EnterpriseDB Corporation 2023 - All Rights Reserved

Thank you!

4242

